

Technical Appendix 14.2: Glossary of Noise Terminology

Windburn Wind Farm

Windburn Wind Farm Ltd

Prepared by:

SLR Consulting Limited

The Tun, 4 Jackson's Entry, Edinburgh, EH8 8PJ

SLR Project No.: 428.V12959.00001

2 June 2025

Revision: 01

2 June 2025 SLR Project No.: 428.V12959.00001

Revision Record

Revision	Date	Prepared By	Checked By	Authorised By
01	2 June 2025	J. Munns	V. Taylor	A. Smith

— .				^	. 4 .	. 4 .
ı a	n		Λt	1:0	nto	nts
ıa	v	-	VI.	V	116	1113

Tables in Text

Table 1-1: Sound Levels Commonly Found in the Environment

1.0 Introduction

The human ear can detect a very wide range of pressure fluctuations, which are perceived as sound. In order to express these fluctuations in a manageable way, a logarithmic scale called the decibel, or dB scale is used. The decibel scale typically ranges from 0 dB (the threshold of hearing) to over 120 dB. An indication of the range of sound levels commonly found in the environment is given in the following table.

Table 1-1: Sound Levels Commonly Found in the Environment

Sound Level	Location		
0 dB(A)	Threshold of hearing		
20 to 30 dB(A)	Quiet bedroom at night		
30 to 40 dB(A)	Living room during the day		
40 to 50 dB(A)	Typical office		
50 to 60 dB(A)	Inside a car		
60 to 70 dB(A)	Typical high street		
70 to 90 dB(A)	Inside factory		
100 to 110 dB(A)	Burglar alarm at 1m away		
110 to 130 dB(A)	Jet aircraft on take off		
140 dB(A)	Threshold of Pain		

Acoustic Terminology

dB (decibel) The scale on which sound pressure level is expressed. It is defined as 20 times

the logarithm of the ratio between the root-mean-square pressure of the sound

field and a reference pressure (of 20 µPa).

dB(A) A-weighted decibel. This is a measure of the overall level of sound across the

audible spectrum with a frequency weighting (i.e. 'A' weighting) to compensate for

the varying sensitivity of the human ear to sound at different frequencies.

L_{Aeq,T} L_{Aeq,T} is defined as the notional steady sound level which, over a stated period T,

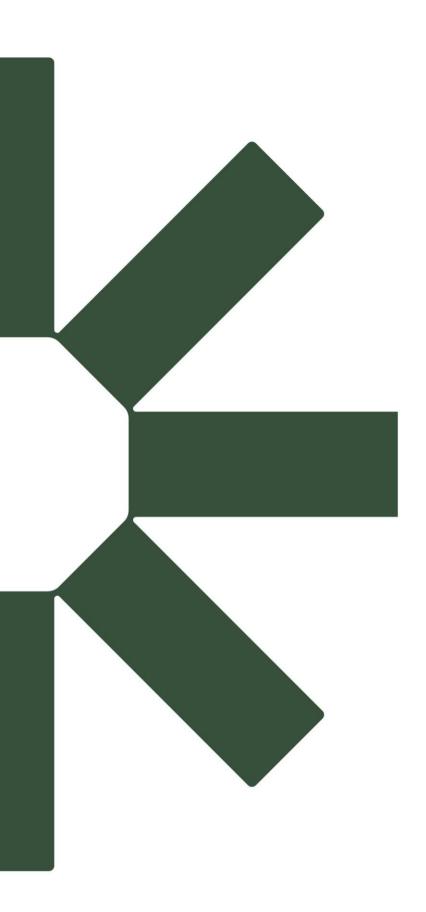
would contain the same amount of acoustical energy as the A-weighted fluctuating

sound measured over that period.

L_{A10,T} & L_{A90} If a non-steady noise is to be described it is necessary to know both its level and

the degree of fluctuation. The L_n indices are used for this purpose, and the term refers to the level exceeded for n% of the time. Hence L_{10} is the level exceeded for 10% of the time and as such can be regarded as the 'average maximum level'. It is common practice to use the L_{10} index to describe traffic noise. Similarly, L_{90} is the

'average minimum level' and is often used to describe the background noise.


L_{Amax(F)} is the maximum A-weighted sound pressure level recorded over the period

stated. L_{Amax} is sometimes used in assessing environmental noise where

occasional loud noises occur, which may have little effect on the overall L_{eq} noise level but will still affect the noise environment. Unless described otherwise, it is

measured using the 'fast' sound level meter response.

